Cargo exchange between human and bacterial extracellular vesicles in gestational tissues: a new paradigm in communication and immune development (2024)

1. GillS, CatchpoleR, ForterreP. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev 2019;43:273-303.

2. Ñahui PalominoRA, VanpouilleC, CostantiniPE, MargolisL. Microbiota-host communications: bacterial extracellular vesicles as a common language. PLoS Pathog 2021;17:e1009508.

3. WelshJA, GoberdhanDCI, O'DriscollL, et al. MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles 2024;13:e12404.

4. BoseS, AggarwalS, SinghDV, AcharyaN. Extracellular vesicles: an emerging platform in gram-positive bacteria. Microb Cell 2020;7:312-22.

5. SáezT, deVos P, SobreviaL, FaasMM. Is there a role for exosomes in foetoplacental endothelial dysfunction in gestational diabetes mellitus? Placenta 2018;61:48-54.

6. KalraH, DrummenGP, MathivananS. Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci 2016;17:170.

7. ManierS, LiuCJ, Avet-LoiseauH, et al. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood 2017;129:2429-36.

8. LeeYT, TranBV, WangJJ, et al. The role of extracellular vesicles in disease progression and detection of hepatocellular carcinoma. Cancers 2021;13:3076.

9. PezzanaC, AgnelyF, BochotA, SiepmannJ, MenaschéP. Extracellular vesicles and biomaterial design: new therapies for cardiac repair. Trends Mol Med 2021;27:231-47.

10. GeQ, ZhouY, LuJ, BaiY, XieX, LuZ. miRNA in plasma exosome is stable under different storage conditions. Molecules 2014;19:1568-75.

11. MaasSLN, BreakefieldXO, WeaverAM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 2017;27:172-88.

12. LiuYJ, WangC. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun Signal 2023;21:77.

13. BuzasEI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol 2023;23:236-50.

14. PittJM, KroemerG, ZitvogelL. Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest 2016;126:1139-43.

15. Toyof*ckuM, SchildS, Kaparakis-LiaskosM, EberlL. Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol 2023;21:415-30.

16. LuoX, YanX, YinD, et al. A bibliometric systematic review of extracellular vesicles in eye diseases from 2003 to 2022. Medicine 2023;102:e34831.

17. JafariN, KhoradmehrA, MoghiminasrR, SeyedHabashi M. Mesenchymal stromal/stem cells-derived exosomes as an antimicrobial weapon for orodental infections. Front Microbiol 2021;12:795682.

18. SartorioMG, PardueEJ, ScottNE, FeldmanMF. Human gut bacteria tailor extracellular vesicle cargo for the breakdown of diet- and host-derived glycans. Proc Natl Acad Sci U S A 2023;120:e2306314120.

19. SegalLN, BlaserMJ. A brave new world: the lung microbiota in an era of change. Ann Am Thorac Soc 2014;11 Suppl 1:S21-7.

20. AmabebeE, RobertFO, AgbalalahT, OrubuESF. Microbial dysbiosis-induced obesity: role of gut microbiota in hom*oeostasis of energy metabolism. Br J Nutr 2020;123:1127-37.

21. AmabebeE, AnumbaDOC. Female gut and genital tract microbiota-induced crosstalk and differential effects of short-chain fatty acids on immune sequelae. Front Immunol 2020;11:2184.

22. AmabebeE, AnumbaDOC. The vagin*l microenvironment: the physiologic role of lactobacilli. Front Med 2018;5:181.

23. TianCM, YangMF, XuHM, et al. Emerging role of bacterial outer membrane vesicle in gastrointestinal tract. Gut Pathog 2023;15:20.

24. FucarinoA, PitruzzellaA, BurgioS, ZarconeMC, ModicaDM, et al. Extracellular vesicles in airway homeostasis and pathophysiology. Applied Sciences 2021;11:9933.

25. Hosseini-GivN, BasasA, HicksC, El-OmarE, El-AssaadF, Hosseini-BeheshtiE. Bacterial extracellular vesicles and their novel therapeutic applications in health and cancer. Front Cell Infect Microbiol 2022;12:962216.

26. MenonR, KhanipovK, RadnaaE, et al. Amplification of microbial DNA from bacterial extracellular vesicles from human placenta. Front Microbiol 2023;14:1213234.

27. Yáñez-MóM, SiljanderPR, AndreuZ, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015;4:27066.

28. KoeppenK, HamptonTH, JarekM, et al. A novel mechanism of host-pathogen interaction through srna in bacterial outer membrane vesicles. PLoS Pathog 2016;12:e1005672.

29. Sheller-MillerS, ChoiK, ChoiC, MenonR. Cyclic-recombinase-reporter mouse model to determine exosome communication and function during pregnancy. Am J Obstet Gynecol 2019;221:502.e1-502.e12.

30. Sheller-MillerS, LeiJ, SaadeG, SalomonC, BurdI, MenonR. Feto-maternal trafficking of exosomes in murine pregnancy models. Front Pharmacol 2016;7:432.

31. JoshiB, SinghB, NadeemA, et al. Transcriptome profiling of staphylococcus aureus associated extracellular vesicles reveals presence of small RNA-cargo. Front Mol Biosci 2020;7:566207.

32. GangodaL, BoukourisS, LiemM, KalraH, MathivananS. Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic? Proteomics 2015;15:260-71.

33. van derPol E, BöingAN, HarrisoP, SturkA, NieuwlandR. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 2012;64:676-705.

34. SpencerN, YeruvaL. Role of bacterial infections in extracellular vesicles release and impact on immune response. Biomed J 2021;44:157-64.

35. MenonR, ShahinH. Extracellular vesicles in spontaneous preterm birth. Am J Reprod Immunol 2021;85:e13353.

36. PaulN, SultanaZ, FisherJJ, MaitiK, SmithR. Extracellular vesicles- crucial players in human pregnancy. Placenta 2023;140:30-8.

37. AnandS, SamuelM, KumarS, MathivananS. Ticket to a bubble ride: cargo sorting into exosomes and extracellular vesicles. Biochim Biophys Acta Proteins Proteom 2019;1867:140203.

38. WeiH, ChenQ, LinL, et al. Regulation of exosome production and cargo sorting. Int J Biol Sci 2021;17:163-77.

39. ZhangY, TangY, SunX, et al. Exporting proteins associated with senescence repair via extracellular vesicles may be associated with early pregnancy loss. Cells 2022;11:2772.

40. ThéryC, WitwerKW, AikawaE, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7:1535750.

41. KonoshenkoMY, LekchnovEA, VlassovAV, LaktionovPP. Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int 2018;2018:8545347.

42. LuoR, ChangY, LiangH, ZhangW, SongY, et al. Interactions between extracellular vesicles and microbiome in human diseases: new therapeutic opportunities. iMeta 2023;2:e86.

43. SchoreyJS, ChengY, McManusWR. Bacteria- and host-derived extracellular vesicles - two sides of the same coin? J Cell Sci 2021:134.

44. OzkocakDC, PhanTK, PoonIKH. Translating extracellular vesicle packaging into therapeutic applications. Front Immunol 2022;13:946422.

45. BettioV, MazzuccoE, AntonaA, et al. Extracellular vesicles from human plasma for biomarkers discovery: impact of anticoagulants and isolation techniques. PLoS One 2023;18:e0285440.

46. BuzásEI, TóthEÁ, SódarBW, Szabó-TaylorKÉ. Molecular interactions at the surface of extracellular vesicles. Semin Immunopathol 2018;40:453-64.

47. MeloniM, AgliardiC, GueriniFR, et al. Oligomeric alpha-synuclein and STX-1A from neural-derived extracellular vesicles (NDEVs) as possible biomarkers of REM sleep behavior disorder in Parkinson’s disease: a preliminary cohort study. Int J Mol Sci 2023;24:8839.

48. MansurS, HabibS, HawkinsM, BrownSR, WeinmanST, BaoY. Preparation of nanoparticle-loaded extracellular vesicles using direct flow filtration. Pharmaceutics 2023;15:1551.

49. AhmedW, KuniyanMS, JawedAM, ChenL. Engineered extracellular vesicles for drug delivery in therapy of stroke. Pharmaceutics 2023;15:2173.

50. EkströmK, CrescitelliR, PéturssonHI, JohanssonJ, LässerC, OlofssonBagge R. Characterization of surface markers on extracellular vesicles isolated from lymphatic exudate from patients with breast cancer. BMC Cancer 2022;22:50.

51. MinicZ, LiY, HüttmannN, UppalGK, D'MelloR, BerezovskiMV. Lysine acetylome of breast cancer-derived small extracellular vesicles reveals specific acetylation patterns for metabolic enzymes. Biomedicines 2023;11:1076.

52. GiovanazziA, vanHerwijnen MJC, KleinjanM, vander Meulen GN, WaubenMHM. Surface protein profiling of milk and serum extracellular vesicles unveils body fluid-specific signatures. Sci Rep 2023;13:8758.

53. Honorato-MauerJ, XavierG, OtaVK, et al. Alterations in microRNA of extracellular vesicles associated with major depression, attention-deficit/hyperactivity and anxiety disorders in adolescents. Transl Psychiatry 2023;13:47.

54. NabhanJF, HuR, OhRS, CohenSN, LuQ. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci U S A 2012;109:4146-51.

55. HoshinoA, KimHS, BojmarL, et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 2020;182:1044-1061.e18.

56. DunlopRA, BanackSA, CoxPA. L1CAM immunocapture generates a unique extracellular vesicle population with a reproducible miRNA fingerprint. RNA Biol 2023;20:140-8.

57. HsuCC, YangY, KannistoE, et al. Simultaneous detection of tumor derived exosomal protein-microRNA pairs with an Exo-PROS biosensor for cancer diagnosis. ACS Nano 2023;17:8108-22.

58. SendaA, KojimaM, WatanabeA, et al. Profiles of lipid, protein and microRNA expression in exosomes derived from intestinal epithelial cells after ischemia-reperfusion injury in a cellular hypoxia model. PLoS One 2023;18:e0283702.

59. YanH, WenY, TianZ, et al. A one-pot isothermal Cas12-based assay for the sensitive detection of microRNAs. Nat Biomed Eng 2023;7:1583-601.

60. Moreno-GonzaloO, Fernandez-DelgadoI, Sanchez-MadridF. Post-translational add-ons mark the path in exosomal protein sorting. Cell Mol Life Sci 2018;75:1-19.

61. ChristL, RaiborgC, WenzelEM, CampsteijnC, StenmarkH. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem Sci 2017;42:42-56.

62. ColomboM, MoitaC, vanNiel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 2013;126:5553-65.

63. StuffersS, SemWegner C, StenmarkH, BrechA. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 2009;10:925-37.

64. TrajkovicK, HsuC, ChiantiaS, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008;319:1244-7.

65. AndreuZ, Yáñez-MóM. Tetraspanins in extracellular vesicle formation and function. Front Immunol 2014;5:442.

66. ChenK, LiangJ, QinT, ZhangY, ChenX, WangZ. The role of extracellular vesicles in embryo implantation. Front Endocrinol 2022;13:809596.

67. DehghanZ, RezaeeD, NooriE, et al. Exosomes as modulators of embryo implantation. Mol Biol Rep 2024;51:284.

68. KowalczykA, WrzecińskaM, Czerniawska-PiątkowskaE, KupczyńskiR. Exosomes - spectacular role in reproduction. Biomed Pharmacother 2022;148:112752.

69. GhafourianM, MahdaviR, AkbariJonoush Z, et al. The implications of exosomes in pregnancy: emerging as new diagnostic markers and therapeutics targets. Cell Commun Signal 2022;20:51.

70. ShiS, TanQ, LiangJ, et al. Placental trophoblast cell-derived exosomal microRNA-1290 promotes the interaction between endometrium and embryo by targeting LHX6. Mol Ther Nucleic Acids 2021;26:760-72.

71. AloiN, DragoG, RuggieriS, CibellaF, ColomboP, LongoV. Extracellular vesicles and immunity: at the crossroads of cell communication. Int J Mol Sci 2024;25:1205.

72. YangJ, LiL, WangL, et al. Trophoblast-derived miR-410-5p induces M2 macrophage polarization and mediates immunotolerance at the fetal-maternal interface by targeting the STAT1 signaling pathway. J Transl Med 2024;22:19.

73. BaiK, LiJ, LinL, et al. Placenta exosomal miRNA-30d-5p facilitates decidual macrophage polarization by targeting HDAC9. J Leukoc Biol 2023;113:434-44.

74. MenonR. Fetal inflammatory response at the fetomaternal interface: a requirement for labor at term and preterm. Immunol Rev 2022;308:149-67.

75. ShepherdMC, RadnaaE, TantengcoOA, et al. Extracellular vesicles from maternal uterine cells exposed to risk factors cause fetal inflammatory response. Cell Commun Signal 2021;19:100.

76. TantengcoOAG, RadnaaE, ShahinH, KechichianT, MenonR. Cross talk: trafficking and functional impact of maternal exosomes at the feto-maternal interface under normal and pathologic states†. Biol Reprod 2021;105:1562-76.

77. RadnaaE, RichardsonLS, Sheller-MillerS, et al. Extracellular vesicle mediated feto-maternal HMGB1 signaling induces preterm birth. Lab Chip 2021;21:1956-73.

78. BucaD, BolognaG, D'AmicoA, et al. Extracellular vesicles in feto-maternal crosstalk and pregnancy disorders. Int J Mol Sci 2020;21:2120.

79. ZhouX, XieF, WangL, ZhangL, ZhangS, et al. The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol 2020;17:323-34.

80. ShermanCD, LodhaS, SahooS. EV cargo sorting in therapeutic development for cardiovascular disease. Cells 2021;10:1500.

81. CarninoJM, LeeH, JinY. Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: a review and comparison of different methods. Respir Res 2019;20:240.

82. De ToroJ, HerschlikL, WaldnerC, MonginiC. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol 2015;6:203.

83. BabstM, SatoTK, BantaLM, EmrSD. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J 1997;16:1820-31.

84. SmithVL, JacksonL, SchoreyJS. Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes. J Immunol 2015;195:2722-30.

85. FrankelEB, AudhyaA. ESCRT-dependent cargo sorting at multivesicular endosomes. Semin Cell Dev Biol 2018;74:4-10.

86. DoresMR, ChenB, LinH, et al. ALIX binds a YPX3L motif of the GPCR PAR1 and mediates ubiquitin-independent ESCRT-III/MVB sorting. J Cell Bioll 2012;197:407-19.

87. DoresMR, GrimseyNJ, MendezF, TrejoJ. ALIX Regulates the ubiquitin-independent lysosomal sorting of the P2Y1 purinergic receptor via a YPX3L motif. PLoS One 2016;11:e0157587.

88. KnorreDG, KudryashovaNV, GodovikovaTS. Chemical and functional aspects of posttranslational modification of proteins. Acta Naturae 2009;1:29-51.

89. AtukoralaI, MathivananS. The role of post-translational modifications in targeting protein cargo to extracellular vesicles. In: Mathivanan S, Fonseka P, Nedeva C, Atukorala I, editors. New Frontiers: Extracellular Vesicles. Cham: Springer International Publishing; 2021. pp. 45-60.

90. CarninoJM, NiK, JinY. Post-translational modification regulates formation and cargo-loading of extracellular vesicles. Front Immunol 2020;11:948.

91. LiS, IakouchevaLM, MooneySD, RadivojacP. Loss of post-translational modification sites in disease. Pac Symp Biocomput ;2010:337-47.

92. Moreno-GonzaloO, Villarroya-BeltriC, Sánchez-MadridF. Post-translational modifications of exosomal proteins. Front Immunol 2014;5:383.

93. BuschowSI, vanBalkom BW, AalbertsM, HeckAJ, WaubenM, StoorvogelW. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol Cell Biol 2010;88:851-6.

94. BuschowSI, Nolte-'tHoen EN, vanNiel G, et al. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 2009;10:1528-42.

95. GauvreauME, CôtéMH, Bourgeois-DaigneaultMC, et al. Sorting of MHC class II molecules into exosomes through a ubiquitin-independent pathway. Traffic 2009;10:1518-27.

96. ChittiSV, FonsekaP, MathivananS. Emerging role of extracellular vesicles in mediating cancer cachexia. Biochem Soc Trans 2018;46:1129-36.

97. MurilloOD, ThistlethwaiteW, RozowskyJ, et al. exRNA atlas analysis reveals distinct extracellular RNA cargo types and their carriers present across human biofluids. Cell 2019;177:463-477.e15.

98. GalloA, TandonM, AlevizosI, IlleiGG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 2012;7:e30679.

99. ChengL, SharplesRA, SciclunaBJ, HillAF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 2014;26:3.

100. GrootM, LeeH. Sorting mechanisms for micrornas into extracellular vesicles and their associated diseases. Cells 2020;9:1044.

101. ZhangJ, LiS, LiL, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genom Proteom Bioinf 2015;13:17-24.

102. ZhengD, HuoM, LiB, et al. The role of exosomes and exosomal microRNA in cardiovascular disease. Front Cell Dev Biol 2020;8:616161.

103. Lázaro-IbáñezE, LässerC, ShelkeGV, et al. DNA analysis of low- and high-density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology. J Extracell Vesicles 2019;8:1656993.

104. FenechM. Cytokinesis-block micronucleus cytome assay. Nat Protoc 2007;2:1084-104.

105. ElzanowskaJ, SemiraC, Costa-SilvaB. DNA in extracellular vesicles: biological and clinical aspects. Mol Oncol 2021;15:1701-14.

106. GhanamJ, ChettyVK, BarthelL, ReinhardtD, HoyerPF, et al. DNA in extracellular vesicles: from evolution to its current application in health and disease. Cell Biosci 2022;12:37.

107. YokoiA, Villar-PradosA, OliphintPA, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv 2019;5:eaax8849.

108. MalkinEZ, BratmanSV. Bioactive DNA from extracellular vesicles and particles. Cell Death Dis 2020;11:584.

109. SansoneP, SaviniC, KurelacI, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A 2017;114:E9066-75.

110. SkotlandT, SandvigK, LlorenteA. Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res 2017;66:30-41.

111. HarasztiRA, DidiotMC, SappE, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles 2016;5:32570.

112. TanA, RajadasJ, SeifalianAM. Exosomes as nano-theranostic delivery platforms for gene therapy. Adv Drug Deliv Rev 2013;65:357-67.

113. XiuF, CôtéMH, Bourgeois-DaigneaultMC, et al. Cutting edge: HLA-DO impairs the incorporation of HLA-DM into exosomes. J Immunol 2011;187:1547-51.

114. van NielG, D'AngeloG, RaposoG. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018;19:213-28.

115. ShenB, WuN, YangJM, GouldSJ. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem 2011;286:14383-95.

116. CesselliD, ParisseP, AleksovaA, et al. Extracellular vesicles: how drug and pathology interfere with their biogenesis and function. Front Physiol 2018;9:1394.

117. TejeraE, Rocha-PeruginiV, López-MartínS, et al. CD81 regulates cell migration through its association with Rac GTPase. Mol Biol Cell 2013;24:261-73.

118. ChairoungduaA, SmithDL, PochardP, HullM, CaplanMJ. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 2010;190:1079-91.

119. RanaS, YueS, StadelD, ZöllerM. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol 2012;44:1574-84.

120. BarnesBJ, SomervilleCC. Modulating cytokine production via select packaging and secretion from extracellular vesicles. Front Immunol 2020;11:1040.

121. ToribioV, Yáñez-MóM. Tetraspanins interweave EV secretion, endosomal network dynamics and cellular metabolism. Eur J Cell Biol 2022;101:151229.

122. KimJH, LeeJ, ParkJ, GhoYS. Gram-negative and gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol 2015;40:97-104.

123. YuYJ, WangXH, FanGC. Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases. Acta Pharmacol Sin 2018;39:514-33.

124. LiuY, DefournyKAY, SmidEJ, AbeeT. Gram-positive bacterial extracellular vesicles and their impact on health and disease. Front Microbiol 2018;9:1502.

125. LeeJ, LeeEY, KimSH, et al. Staphylococcus aureus extracellular vesicles carry biologically active β-lactamase. Antimicrob Agents Chemother 2013;57:2589-95.

126. BrownL, KesslerA, Cabezas-SanchezP, Luque-GarciaJL, CasadevallA. Extracellular vesicles produced by the gram-positive bacterium Bacillus subtilis are disrupted by the lipopeptide surfactin. Mol Microbiol 2014;93:183-98.

127. BrownL, WolfJM, Prados-RosalesR, CasadevallA. Through the wall: extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 2015;13:620-30.

128. Kaparakis-LiaskosM, FerreroRL. Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol 2015;15:375-87.

129. Toyof*ckuM, TashiroY, HasegawaY, KurosawaM, NomuraN. Bacterial membrane vesicles, an overlooked environmental colloid: Biology, environmental perspectives and applications. Adv Colloid Interface Sci 2015;226:65-77.

130. TulkensJ, DeWever O, HendrixA. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization. Nat Protoc 2020;15:40-67.

131. CaruanaJC, WalperSA. Bacterial membrane vesicles as mediators of microbe - microbe and microbe - host community interactions. Front Microbiol 2020;11:432.

132. Toyof*ckuM, NomuraN, EberlL. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol 2019;17:13-24.

133. WangX, ThompsonCD, WeidenmaierC, LeeJC. Release of staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun 2018;9:1379.

134. XieS, ZhangQ, JiangL. Current knowledge on exosome biogenesis, cargo-sorting mechanism and therapeutic implications. Membranes 2022;12:498.

135. MashburnLM, WhiteleyM. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 2005;437:422-5.

136. Toyof*ckuM, MorinagaK, HashimotoY, UhlJ, ShimamuraH, et al. Membrane vesicle-mediated bacterial communication. ISME J 2017;11:1504-9.

137. KimYY, JohJS, LeeJY. Importance of microbial extracellular vesicle in the pathogenesis of asthma and chronic obstructive pulmonary disease and its diagnostic potential. Asia Pac Allergy 2020;10:e25.

138. ChangX, WangSL, ZhaoSB, et al. Extracellular vesicles with possible roles in gut intestinal tract homeostasis and IBD. Mediators Inflamm 2020;2020:1945832.

139. KuipersME, HokkeCH, SmitsHH, Nolte-'tHoen ENM. Pathogen-derived extracellular vesicle-associated molecules that affect the host immune system: an overview. Front Microbiol 2018;9:2182.

140. Mashburn-WarrenLM, WhiteleyM. Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 2006;61:839-46.

141. ChenF, CuiG, WangS, et al. Outer membrane vesicle-associated lipase FtlA enhances cellular invasion and virulence in Francisella tularensis LVS. Emerg Microbes Infect 2017;6:e66.

142. FinethyR, LuomaS, Orench-RiveraN, et al. Inflammasome activation by bacterial outer membrane vesicles requires guanylate binding proteins. mBio 2017;8:e01188-17.

143. LosierTT, AkumaM, McKee-MuirOC, et al. AMPK promotes Xenophagy through priming of autophagic kinases upon detection of bacterial outer membrane vesicles. Cell Rep 2019;26:2150-2165.e5.

144. MacDonaldIA, KuehnMJ. Offense and defense: microbial membrane vesicles play both ways. Res Microbiol 2012;163:607-18.

145. BittoNJ, ChapmanR, PidotS, CostinA, LoC, et al. Bacterial membrane vesicles transport their DNA cargo into host cells. Sci Rep 2017;7:7072.

146. SchaarV, UddbäckI, NordströmT, RiesbeckK. Group A streptococci are protected from amoxicillin-mediated killing by vesicles containing β-lactamase derived from Haemophilus influenzae. J Antimicrob Chemother 2014;69:117-20.

147. SchaarV, PaulssonM, MörgelinM, RiesbeckK. Outer membrane vesicles shield Moraxella catarrhalis β-lactamase from neutralization by serum IgG. J Antimicrob Chemother 2013;68:593-600.

148. BittoNJ, Kaparakis-LiaskosM. The therapeutic benefit of bacterial membrane vesicles. Int J Mol Sci 2017;18:1287.

149. SchettersSTT, JongWSP, HorrevortsSK, et al. Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8+ T cells. Acta Biomater 2019;91:248-57.

150. ChoiSJ, KimMH, JeonJ, et al. Active immunization with extracellular vesicles derived from staphylococcus aureus effectively protects against staphylococcal lung infections, mainly via Th1 cell-mediated immunity. PLoS One 2015;10:e0136021.

151. ChenG, BaiY, LiZ, WangF, FanX, ZhouX. Bacterial extracellular vesicle-coated multi-antigenic nanovaccines protect against drug-resistant Staphylococcus aureus infection by modulating antigen processing and presentation pathways. Theranostics 2020;10:7131-49.

152. AcevedoR, FernándezS, ZayasC, et al. Bacterial outer membrane vesicles and vaccine applications. Front Immunol 2014;5:121.

153. TartagliaNR, NicolasA, RodovalhoVR, et al. Extracellular vesicles produced by human and animal staphylococcus aureus strains share a highly conserved core proteome. Sci Rep 2020;10:8467.

154. JanAT. Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Front Microbiol 2017;8:1053.

155. LeeJ, KimOY, GhoYS. Proteomic profiling of gram-negative bacterial outer membrane vesicles: current perspectives. . Proteomics Clin Appl 2016;10:897-909.

156. CahillBK, SeeleyKW, GutelD, EllisTN. Klebsiella pneumoniae O antigen loss alters the outer membrane protein composition and the selective packaging of proteins into secreted outer membrane vesicles. Microbiol Res 2015;180:1-10.

157. ChenC, KawamotoJ, KawaiS, et al. Isolation of a novel bacterial strain capable of producing abundant extracellular membrane vesicles carrying a single major cargo protein and analysis of its transport mechanism. Front Microbiol 2019;10:3001.

158. SchwechheimerC, KuehnMJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 2015;13:605-19.

159. HauratMF, Aduse-OpokuJ, RangarajanM, et al. Selective sorting of cargo proteins into bacterial membrane vesicles. J Biol Chem 2011;286:1269-76.

160. ReschU, TsatsaronisJA, LeRhun A, et al. A two-component regulatory system impacts extracellular membrane-derived vesicle production in group a streptococcus. mBio 2016;7:e00207-16.

161. VeithPD, ChenYY, GorasiaDG, et al. Porphyromonas gingivalis outer membrane vesicles exclusively contain outer membrane and periplasmic proteins and carry a cargo enriched with virulence factors. J Proteome Res 2014;13:2420-32.

162. SharpPM, LiWH. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 1987;15:1281-95.

163. dos ReisM, WernischL, SavvaR. Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Res 2003;31:6976-85.

164. IshihamaY, SchmidtT, RappsilberJ, et al. Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 2008;9:102.

165. NguyenTT, SaxenaA, BeveridgeTJ. Effect of surface lipopolysaccharide on the nature of membrane vesicles liberated from the Gram-negative bacterium Pseudomonas aeruginosa. J Electron Microsc 2003;52:465-9.

166. Lo CiceroA, StahlPD, RaposoG. Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol 2015;35:69-77.

167. GyörgyB, HungME, BreakefieldXO, LeonardJN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 2015;55:439-64.

168. SkogJ, WürdingerT, vanRijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008;10:1470-6.

169. CecilJD, SirisaengtaksinN, O'Brien-SimpsonNM, KrachlerAM. Outer membrane vesicle-host cell interactions. Microbiol Spectr 2019;7:Online ahead of print.

170. O'DonoghueEJ, KrachlerAM. Mechanisms of outer membrane vesicle entry into host cells. Cell Microbiol 2016;18:1508-17.

171. EllisTN, LeimanSA, KuehnMJ. Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect Immun 2010;78:3822-31.

172. BombergerJM, MaceachranDP, CoutermarshBA, YeS, O'TooleGA, StantonBA. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 2009;5:e1000382.

173. FurutaN, TsudaK, OmoriH, YoshimoriT, YoshimuraF, AmanoA. Porphyromonas gingivalis outer membrane vesicles enter human epithelial cells via an endocytic pathway and are sorted to lysosomal compartments. Infect Immun 2009;77:4187-96.

174. OlofssonA, NygårdSkalman L, ObiI, LundmarkR, ArnqvistA. Uptake of Helicobacter pylori vesicles is facilitated by clathrin-dependent and clathrin-independent endocytic pathways. mBio 2014;5:e00979-14.

175. ParkerH, ChitcholtanK, HamptonMB, KeenanJI. Uptake of helicobacter pylori outer membrane vesicles by gastric epithelial cells. Infect Immun 2010;78:5054-61.

176. BielaszewskaM, RüterC, BauwensA, et al. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: intracellular delivery, trafficking and mechanisms of cell injury. PLoS Pathog 2017;13:e1006159.

177. KunsmannL, RuterC, BauwensA, GreuneL, GluderM, et al. Virulence from vesicles: novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain. Sci Rep 2015;5:13252.

178. PollakCN, DelpinoMV, FossatiCA, BaldiPC. Outer membrane vesicles from Brucella abortus promote bacterial internalization by human monocytes and modulate their innate immune response. PLoS One 2012;7:e50214.

179. SharpeSW, KuehnMJ, MasonKM. Elicitation of epithelial cell-derived immune effectors by outer membrane vesicles of nontypeable Haemophilus influenzae. Infect Immun 2011;79:4361-9.

180. ChatterjeeD, ChaudhuriK. Association of cholera toxin with Vibrio cholerae outer membrane vesicles which are internalized by human intestinal epithelial cells. FEBS Lett 2011;585:1357-62.

181. KestyNC, MasonKM, ReedyM, MillerSE, KuehnMJ. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J 2004;23:4538-49.

182. BaumanSJ, KuehnMJ. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiol 2009;9:26.

183. ElmiA, WatsonE, SanduP, et al. Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells. Infect Immun 2012;80:4089-98.

184. MondalA, TapaderR, ChatterjeeNS, et al. Cytotoxic and inflammatory responses induced by outer membrane vesicle-associated biologically active proteases from vibrio cholerae. Infect Immun 2016;84:1478-90.

185. KaparakisM, TurnbullL, CarneiroL, et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol 2010;12:372-85.

186. SchaarV, deVries SP, PerezVidakovics ML, et al. Multicomponent Moraxella catarrhalis outer membrane vesicles induce an inflammatory response and are internalized by human epithelial cells. Cell Microbiol 2011;13:432-49.

187. VidakovicsML, JendholmJ, MörgelinM, et al. B cell activation by outer membrane vesicles--a novel virulence mechanism. PLoS Pathog 2010;6:e1000724.

188. JinJS, KwonSO, MoonDC, et al. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PLoS One 2011;6:e17027.

189. RompikuntalPK, ThayB, KhanMK, et al. Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect Immun 2012;80:31-42.

190. ThayB, DammA, KuferTA, WaiSN, OscarssonJ. Aggregatibacter actinomycetemcomitans outer membrane vesicles are internalized in human host cells and trigger NOD1- and NOD2-dependent NF-κB activation. Infect Immun 2014;82:4034-46.

191. JägerJ, KeeseS, RoessleM, SteinertM, SchrommAB. Fusion of legionella pneumophila outer membrane vesicles with eukaryotic membrane systems is a mechanism to deliver pathogen factors to host cell membranes. Cell Microbiol 2015;17:607-20.

192. MulcahyLA, PinkRC, CarterDR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014;3:24641.

193. BloomfieldG, KayRR. Uses and abuses of macropinocytosis. J Cell Sci 2016;129:2697-705.

194. AmanoA, TakeuchiH, FurutaN. Outer membrane vesicles function as offensive weapons in host-parasite interactions. Microbes Infect 2010;12:791-8.

195. MettlenM, ChenPH, SrinivasanS, DanuserG, SchmidSL. Regulation of clathrin-mediated endocytosis. Annu Rev Biochem 2018;87:871-96.

196. KaksonenM, RouxA. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2018;19:313-26.

197. McMahonHT, BoucrotE. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011;12:517-33.

198. RewatkarPV, PartonRG, ParekhHS, ParatMO. Are caveolae a cellular entry route for non-viral therapeutic delivery systems? Adv Drug Deliv Rev 2015;91:92-108.

199. SandvigK, vanDeurs B. Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett 2002;529:49-53.

200. VanajaSK, RussoAJ, BehlB, et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 2016;165:1106-19.

201. BielaszewskaM, RüterC, KunsmannL, et al. Enterohemorrhagic Escherichia coli hemolysin employs outer membrane vesicles to target mitochondria and cause endothelial and epithelial apoptosis. PLoS Pathog 2013;9:e1003797.

202. TurnerL, BittoNJ, SteerDL, et al. Helicobacter pylori outer membrane vesicle size determines their mechanisms of host cell entry and protein content. Front Immunol 2018;9:1466.

203. KestyNC, KuehnMJ. Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles. J Biol Chem 2004;279:2069-76.

204. MachadoFS, RodriguezNE, AdesseD, et al. Recent Developments in the Interactions Between Caveolin and Pathogens. In: Jasmin J, Frank PG, Lisanti MP, editors. Caveolins and Caveolae. New York: Springer US; 2012. pp. 65-82.

205. RitterTE, FajardoO, MatsueH, AndersonRG, LaceySW. Folate receptors targeted to clathrin-coated pits cannot regulate vitamin uptake. Proc Natl Acad Sci U S A 1995;92:3824-8.

206. KimYR, KimBU, KimSY, et al. Outer membrane vesicles of Vibrio vulnificus deliver cytolysin-hemolysin VvhA into epithelial cells to induce cytotoxicity. Biochem Biophys Res Commun 2010;399:607-12.

207. Haas-NeillS, ForsytheP. A budding relationship: bacterial extracellular vesicles in the microbiota-gut-brain Axis. Int J Mol Sci 2020;21:8899.

208. SenderR, FuchsS, MiloR. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14:e1002533.

209. ZhaoG, JonesMK. Role of bacterial extracellular vesicles in manipulating infection. Infect Immun 2023;91:e0043922.

210. DongXH, HoMH, LiuB, et al. Role of porphyromonas gingivalis outer membrane vesicles in oral mucosal transmission of HIV. Sci Rep 2018;8:8812.

211. BharS, ZhaoG, BartelJD, et al. Bacterial extracellular vesicles control murine norovirus infection through modulation of antiviral immune responses. Front Immunol 2022;13:909949.

212. AmabebeE, AnumbaDOC. Mechanistic insights into immune suppression and evasion in bacterial vaginosis. Curr Microbiol 2022;79:84.

213. StentzR, HornN, CrossK, et al. Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against β-lactam antibiotics. J Antimicrob Chemother 2015;70:701-9.

214. RomeroR, DeySK, FisherSJ. Preterm labor: one syndrome, many causes. Science 2014;345:760-5.

215. KulpA, KuehnMJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 2010;64:163-84.

216. WangY, LuoX, XiangX, HaoC, MaD. Roles of bacterial extracellular vesicles in systemic diseases. Front Microbiol 2023;14:1258860.

217. AlvarezCS, BadiaJ, BoschM, GiménezR, BaldomàL. Outer membrane vesicles and soluble factors released by probiotic escherichia coli nissle 1917 and commensal ECOR63 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells. Front Microbiol 2016;7:1981.

218. CecilJD, O'Brien-SimpsonNM, LenzoJC, et al. Outer membrane vesicles prime and activate macrophage inflammasomes and cytokine secretion in vitro and in vivo. Front Immunol 2017;8:1017.

219. EngevikMA, DanhofHA, RuanW, et al. Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation. mBio 2021;12:e02706-20.

220. HongGE, KimDG, ParkEM, NamBH, KimYO, KongIS. Identification of Vibrio anguillarum outer membrane vesicles related to immunostimulation in the Japanese flounder, Paralichthys olivaceus. Biosci Biotechnol Biochem 2009;73:437-9.

221. Prados-RosalesR, BaenaA, MartinezLR, et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest 2011;121:1471-83.

222. BalhuizenMD, VersluisCM, vanGrondelle MO, VeldhuizenEJA, HaagsmanHP. Modulation of outer membrane vesicle-based immune responses by cathelicidins. Vaccine 2022;40:2399-408.

223. LiuP, WangX, YangQ, et al. Collaborative action of microglia and astrocytes mediates neutrophil recruitment to the CNS to defend against Escherichia coli K1 infection. Int J Mol Sci 2022;23:6540.

224. BittoNJ, ChengL, JohnstonEL, et al. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles 2021;10:e12080.

225. VitseJ, DevreeseB. The contribution of membrane vesicles to bacterial pathogenicity in cystic fibrosis infections and healthcare associated pneumonia. Front Microbiol 2020;11:630.

226. SurveMV, AnilA, KamathKG, et al. Membrane vesicles of group B streptococcus disrupt feto-maternal barrier leading to preterm birth. PLoS Pathog 2016;12:e1005816.

227. KaisanlahtiA, TurunenJ, BytsN, et al. Maternal microbiota communicates with the fetus through microbiota-derived extracellular vesicles. Microbiome 2023;11:249.

228. NunziE, MezzasomaL, BellezzaI, et al. Microbiota-associated HAF-EVs regulate monocytes by triggering or inhibiting inflammasome activation. Int J Mol Sci 2023;24:2527.

229. FarrellyR, KennedyMG, SpencerR, ForbesK. Extracellular vesicles as markers and mediators of pregnancy complications: gestational diabetes, pre-eclampsia, preterm birth and fetal growth restriction. J Physiol 2023;601:4973-88.

230. MorelliAE, SadovskyY. Extracellular vesicles and immune response during pregnancy: a balancing act. Immunol Rev 2022;308:105-22.

231. TakahashiA, OkadaR, NagaoK, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun 2017;8:15287.

232. TorralbaD, BaixauliF, Villarroya-BeltriC, et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun 2018;9:2658.

233. WangW, KongP, MaG, et al. Characterization of the release and biological significance of cell-free DNA from breast cancer cell lines. Oncotarget 2017;8:43180-91.

234. KumariP, VasudevanSO, RussoAJ, et al. Host extracellular vesicles confer cytosolic access to systemic LPS licensing non-canonical inflammasome sensing and pyroptosis. Nat Cell Biol 2023;25:1860-72.

235. GelberSE, AguilarJL, LewisKL, RatnerAJ. Functional and phylogenetic characterization of Vaginolysin, the human-specific cytolysin from Gardnerella vagin*lis. J Bacteriol 2008;190:3896-903.

236. ShishpalP, KasarpalkarN, SinghD, BhorVM. Characterization of Gardnerella vagin*lis membrane vesicles reveals a role in inducing cytotoxicity in vagin*l epithelial cells. Anaerobe 2020;61:102090.

237. HopfnerKP, HornungV. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol 2020;21:501-21.

238. AllenER, Whitefoot-KeliinKM, PalmatierEM, MahonAR, Greenlee-WackerMC. Extracellular vesicles from A23187-treated neutrophils cause cGAS-STING-dependent IL-6 production by macrophages. Front Immunol 2022;13:949451.

239. CuiJZ, ChewZH, LimLHK. New insights into nucleic acid sensor AIM2: The potential benefit in targeted therapy for cancer. Pharmacol Res 2024;200:107079.

240. LiuS, FengM, GuanW. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond. Int J Cancer 2016;139:736-41.

241. BehniaF, ShellerS, MenonR. Mechanistic differences leading to infectious and sterile inflammation. Am J Reprod Immunol 2016;75:505-18.

242. ParrisKM, AmabebeE, CohenMC, AnumbaDO. Placental microbial-metabolite profiles and inflammatory mechanisms associated with preterm birth. J Clin Pathol 2021;74:10-8.

243. Sheller-MillerS, Urrabaz-GarzaR, SaadeG, MenonR. Damage-associated molecular pattern markers HMGB1 and cell-Free fetal telomere fragments in oxidative-stressed amnion epithelial cell-derived exosomes. J Reprod Immunol 2017;123:3-11.

244. MenonR. Initiation of human parturition: signaling from senescent fetal tissues via extracellular vesicle mediated paracrine mechanism. Obstet Gynecol Sci 2019;62:199-211.

245. TongM, JohanssonC, XiaoF, et al. Antiphospholipid antibodies increase the levels of mitochondrial DNA in placental extracellular vesicles: alarmin-g for preeclampsia. Sci Rep 2017;7:16556.

246. CondratCE, VarlasVN, DuicăF, et al. Pregnancy-related extracellular vesicles revisited. Int J Mol Sci 2021;22:3904.

247. Nadeau-ValléeM, ObariD, PalaciosJ, et al. Sterile inflammation and pregnancy complications: a review. Reproduction 2016;152:R277-92.

248. RomeroR, ChaiworapongsaT, AlpaySavasan Z, et al. Damage-associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med 2011;24:1444-55.

249. RomeroR, ChaiworapongsaT, SavasanZA, et al. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J Matern Fetal Neonatal Med 2012;25:558-67.

250. RomeroR, MirandaJ, ChaiworapongsaT, et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol 2014;72:458-74.

251. MarsmanG, ZeerlederS, LukenBM. Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation. Cell Death Dis 2016;7:e2518.

252. RomeroR, EspinozaJ, KusanovicJP, et al. The preterm parturition syndrome. BJOG 2006;113 Suppl 3:17-42.

253. RomeroR, MirandaJ, ChaemsaithongP, et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2015;28:1394-409.

254. RomeroR, GómezR, ChaiworapongsaT, ConoscentiG, KimJC, KimYM. The role of infection in preterm labour and delivery. Paediatr Perinat Epidemiol 2001;15 Suppl 2:41-56.

255. AmabebeE, AnumbaDO. The transmembrane G protein-coupled CXCR3 receptor-ligand system and maternal foetal allograft rejection. Placenta 2021;104:81-8.

256. SrinivasanU, MisraD, MarazitaML, FoxmanB. vagin*l and oral microbes, host genotype and preterm birth. Med Hypotheses 2009;73:963-75.

257. KeelanJA. Intrauterine inflammatory activation, functional progesterone withdrawal, and the timing of term and preterm birth. J Reprod Immunol 2018;125:89-99.

258. RomeroR, Gomez-LopezN, WintersAD, et al. Evidence that intra-amniotic infections are often the result of an ascending invasion - a molecular microbiological study. J Perinat Med 2019;47:915-31.

259. StaffordGP, ParkerJL, AmabebeE, et al. Spontaneous preterm birth is associated with differential expression of vagin*l metabolites by lactobacilli-dominated microflora. Front Physiol 2017;8:615.

260. GudnadottirU, DebeliusJW, DuJ, et al. The vagin*l microbiome and the risk of preterm birth: a systematic review and network meta-analysis. Sci Rep 2022;12:7926.

261. KostiI, LyalinaS, PollardKS, ButteAJ, SirotaM. Meta-analysis of vagin*l microbiome data provides new insights into preterm birth. Front Microbiol 2020;11:476.

262. TantengcoOAG, MenonR. Effects of Ureaplasma parvum infection in the exosome biogenesis-related proteins in ectocervical epithelial cells. Am J Reprod Immunol 2024;91:e13803.

263. BentoGFC, RichardsonLS, daSilva MG, TantengcoOAG, MenonR. Modeling an ascending infection by Ureaplasma parvum and its cell signaling and inflammatory response at the feto-maternal interface. Am J Reprod Immunol 2023;90:e13770.

264. AmabebeE, RichardsonLS, BentoGFC, et al. Ureaplasma parvum infection induces inflammatory changes in vagin*l epithelial cells independent of sialidase. Mol Biol Rep 2023;50:3035-43.

265. RomeroR, MirandaJ, ChaiworapongsaT, et al. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intra-amniotic infection in preterm labor with intact membranes. Am J Reprod Immunol 2014;71:330-58.

266. CoboT, VivesI, Rodríguez-TrujilloA, et al. Impact of microbial invasion of amniotic cavity and the type of microorganisms on short-term neonatal outcome in women with preterm labor and intact membranes. Acta Obstet Gynecol Scand 2017;96:570-9.

267. OvalleS A, GómezM R, MartínezT MA, et al. [Outcome of microbial invasion of amniotic cavity in the preterm premature rupture of membranes]. Rev Med Chil 2005;133:51-61.

268. OhKJ, LeeSE, JungH, KimG, RomeroR, YoonBH. Detection of ureaplasmas by the polymerase chain reaction in the amniotic fluid of patients with cervical insufficiency. J Perinat Med 2010;38:261-8.

269. RowlandsS, DanielewskiJA, TabriziSN, WalkerSP, GarlandSM. Microbial invasion of the amniotic cavity in midtrimester pregnancies using molecular microbiology. Am J Obstet Gynecol 2017;217:71.e1-5.

270. KasprzykowskaU, EliasJ, EliasM, MączyńskaB, SobieszczańskaBM. Colonization of the lower urogenital tract with Ureaplasma parvum can cause asymptomatic infection of the upper reproductive system in women: a preliminary study. Arch Gynecol Obstet 2014;289:1129-34.

271. Noda-NicolauNM, TantengcoOAG, PolettiniJ, et al. Genital mycoplasmas and biomarkers of inflammation and their association with spontaneous preterm birth and preterm prelabor rupture of membranes: a systematic review and meta-analysis. Front Microbiol 2022;13:859732.

272. KacerovskyM, KuklaR, BolehovskaR, et al. Prevalence and load of cervical Ureaplasma species with respect to intra-amniotic complications in women with preterm prelabor rupture of membranes before 34 weeks. Front Pharmacol 2022;13:860498.

273. KacerovskyM, StranikJ, KuklaR, et al. Intra-amniotic infection and sterile intra-amniotic inflammation in women with preterm labor with intact membranes are associated with a higher rate of Ureaplasma species DNA presence in the cervical fluid. J Matern Fetal Neonatal Med 2022;35:7344-52.

274. MotomuraK, RomeroR, XuY, et al. Intra-amniotic infection with ureaplasma parvum causes preterm birth and neonatal mortality that are prevented by treatment with clarithromycin. mBio 2020;11:e00797-20.

275. SweeneyEL, DandoSJ, KallapurSG, KnoxCL. The human ureaplasma species as causative agents of chorioamnionitis. Clin Microbiol Rev 2017;30:349-79.

276. MirallesR, HodgeR, McParlandPC, et al. Relationship between antenatal inflammation and antenatal infection identified by detection of microbial genes by polymerase chain reaction. Pediatr Res 2005;57:570-7.

277. YoonBH, RomeroR, KimM, et al. Clinical implications of detection of Ureaplasma urealyticum in the amniotic cavity with the polymerase chain reaction. Am J Obstet Gynecol 2000;183:1130-7.

278. ŠketT, RamutaTŽ, StarčičErjavec M, KreftME. The role of innate immune system in the human amniotic membrane and human amniotic fluid in protection against intra-amniotic infections and inflammation. Front Immunol 2021;12:735324.

279. SantosP, AlmeidaF. Exosome-based vaccines: history, current state, and clinical trials. Front Immunol 2021;12:711565.

280. PordanjaniPM, BolhassaniA, MilaniA, PouriayevaliMH. Extracellular vesicles in vaccine development and therapeutic approaches for viral diseases. Process Biochem 2023;128:167-80.

281. KalluriR, LeBleuVS. The biology, function, and biomedical applications of exosomes. Science 2020;367:eaau6977.

282. LiQ, ZhouG, FeiX, TianY, WangS, ShiH. Engineered bacterial outer membrane vesicles with lipidated heterologous antigen as an adjuvant-free vaccine platform for streptococcus suis. Appl Environ Microbiol 2023;89:e0204722.

283. LiuH, ZhangQ, WangS, WengW, JingY, SuJ. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: advances and perspectives. Bioact Mater 2022;14:169-81.

284. XunianZ, KalluriR. Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Sci 2020;111:3100-10.

285. KacerovskyM, StranikJ, MatulovaJ, et al. Clinical characteristics of colonization of the amniotic cavity in women with preterm prelabor rupture of membranes, a retrospective study. Sci Rep 2022;12:5062.

286. DagnelieMA, CorvecS, KhammariA, DrénoB. Bacterial extracellular vesicles: a new way to decipher host-microbiota communications in inflammatory dermatoses. Exp Dermatol 2020;29:22-8.

287. LiuZ, LiuS, ShuY, et al. Severe bordetella pertussis infection and vaccine issue in Chongqing, from 2012 to 2018. Int J Infect Dis 2019;84:102-8.

288. MehannyM, KochM, LehrCM, FuhrmannG. Streptococcal extracellular membrane vesicles are rapidly internalized by immune cells and alter their cytokine release. Front Immunol 2020;11:80.

289. AmabebeE, AnumbaDO. Diabetogenically beneficial gut microbiota alterations in third trimester of pregnancy. Reprod Fertil 2021;2:R1-R12.

290. AmabebeE, IkumiN, PillayK, MatjilaM, AnumbaD. Maternal obesity-related placental dysfunction: from peri-conception to late gestation. PRM 2023;2:Online ahead of print.

291. ThaxtonJE, RomeroR, SharmaS. TLR9 activation coupled to IL-10 deficiency induces adverse pregnancy outcomes. J Immunol 2009;183:1144-54.

292. Scharfe-NugentA, CorrSC, CarpenterSB, et al. TLR9 provokes inflammation in response to fetal DNA: mechanism for fetal loss in preterm birth and preeclampsia. J Immunol 2012;188:5706-12.

293. van BoeckelSR, DavidsonDJ, NormanJE, StockSJ. Cell-free fetal DNA and spontaneous preterm birth. Reproduction 2018;155:R137-45.

294. SunY, QinX, ShanB, et al. Differential effects of the CpG-Toll-like receptor 9 axis on pregnancy outcome in nonobese diabetic mice and wild-type controls. Fertil Steril 2013;99:1759-67.

295. LiuZ, TangZ, LiJ, YangY. Effects of placental inflammation on neonatal outcome in preterm infants. Pediatr Neonatol 2014;55:35-40.

296. KimMA, LeeYS, SeoK. Assessment of predictive markers for placental inflammatory response in preterm births. PLoS One 2014;9:e107880.

297. KimCJ, RomeroR, ChaemsaithongP, ChaiyasitN, YoonBH, KimYM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol 2015;213:S29-52.

298. KempMW. Preterm birth, intrauterine infection, and fetal inflammation. Front Immunol 2014;5:574.

299. GoldsteinJA, GallagherK, BeckC, KumarR, GernandAD. Maternal-fetal inflammation in the placenta and the developmental origins of health and disease. Front Immunol 2020;11:531543.

300. HantoushzadehS, AnvariAliabad R, NorooznezhadAH. Antibiotics, inflammation, and preterm labor: a missed conclusion. J Inflamm Res 2020;13:245-54.

301. McClureEM, GoldenbergRL. Use of antibiotics to reduce preterm birth. Lancet Glob Health 2019;7:e18-9.

302. MöhrmannL, HuangHJ, HongDS, et al. Liquid biopsies using plasma exosomal nucleic acids and plasma cell-free DNA compared with clinical outcomes of patients with advanced cancers. Clin Cancer Res 2018;24:181-8.

303. WanY, LiuB, LeiH, et al. Nanoscale extracellular vesicle-derived DNA is superior to circulating cell-free DNA for mutation detection in early-stage non-small-cell lung cancer. Ann Oncol 2018;29:2379-83.

304. KeserűJS, SoltészB, LukácsJ, et al. Detection of cell-free, exosomal and whole blood mitochondrial DNA copy number in plasma or whole blood of patients with serous epithelial ovarian cancer. J Biotechnol 2019;298:76-81.

305. KimDJ, YangJ, SeoH, LeeWH, HoLee D, et al. Colorectal cancer diagnostic model utilizing metagenomic and metabolomic data of stool microbial extracellular vesicles. Sci Rep 2020;10:2860.

306. RamosBRA, TroncoJA, CarvalhoM, et al. Circulating extracellular vesicles microRNAs are altered in women undergoing preterm birth. Int J Mol Sci 2023;24:5527.

307. ZhaoQ, MaZ, WangX, et al. Lipidomic biomarkers of extracellular vesicles for the prediction of preterm birth in the early second trimester. J Proteome Res 2020;19:4104-13.

308. KammalaAK, MosebargerA, RadnaaE, et al. Extracellular vesicles-mediated recombinant IL-10 protects against ascending infection-associated preterm birth by reducing fetal inflammatory response. Front Immunol 2023;14:1196453.

309. GilmoreWJ, JohnstonEL, BittoNJ, et al. Bacteroides fragilis outer membrane vesicles preferentially activate innate immune receptors compared to their parent bacteria. Front Immunol 2022;13:970725.

310. HadleyEE, Sheller-MillerS, SaadeG, et al. Amnion epithelial cell-derived exosomes induce inflammatory changes in uterine cells. Am J Obstet Gynecol 2018;219:478.e1-478.e21.

311. HanC, HanL, HuangP, ChenY, WangY, XueF. Syncytiotrophoblast-derived extracellular vesicles in pathophysiology of preeclampsia. Front Physiol 2019;10:1236.

312. HanC, WangC, ChenY, et al. Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica 2020;105:1686-94.

313. CookeWR, JonesGD, RedmanCW, VatishM. Syncytiotrophoblast derived extracellular vesicles in relation to preeclampsia. Maternal-Fetal Medicine 2021;3:151-60.

314. PowellJS, GandleyRE, LacknerE, et al. Small extracellular vesicles from plasma of women with preeclampsia increase myogenic tone and decrease endothelium-dependent relaxation of mouse mesenteric arteries. Pregnancy Hypertens 2022;28:66-73.

315. JarosikGP, LandCB, DuhonP, ChandlerR Jr, MercerT. Acquisition of iron by Gardnerella vagin*lis. Infect Immun 1998;66:5041-7.

316. JarosikGP, LandCB. Identification of a human lactoferrin-binding protein in Gardnerella vagin*lis. Infect Immun 2000;68:3443-7.

317. KhanS, VoordouwMJ, HillJE. Competition among Gardnerella subgroups from the human vagin*l microbiome. Front Cell Infect Microbiol 2019;9:374.

318. Ñahui PalominoRA, ZicariS, VanpouilleC, VitaliB, MargolisL. vagin*l lactobacillus inhibits HIV-1 replication in human tissues ex vivo. Front Microbiol 2017;8:906.

319. CostantiniPE, VanpouilleC, FirrincieliA, CappellettiM, MargolisL, ÑahuiPalomino RA. Extracellular vesicles generated by gram-positive bacteria protect human tissues ex vivo from HIV-1 infection. Front Cell Infect Microbiol 2021;11:822882.

320. GilmoreWJ, BittoNJ, Kaparakis-liaskosM. Pathogenesis mediated by bacterial membrane vesicles. In: Mathivanan S, Fonseka P, Nedeva C, Atukorala I, editors. New Frontiers: Extracellular Vesicles. Cham: Springer International Publishing; 2021. pp. 101-50.

321. GilmoreWJ, JohnstonEL, ZavanL, BittoNJ, Kaparakis-LiaskosM. Immunomodulatory roles and novel applications of bacterial membrane vesicles. Mol Immunol 2021;134:72-85.

322. HuangW, YaoY, LongQ, et al. Immunization against multidrug-resistant Acinetobacter baumannii effectively protects mice in both pneumonia and sepsis models. PLoS One 2014;9:e100727.

323. RaevenRH, BrummelmanJ, PenningsJL, et al. Bordetella pertussis outer membrane vesicle vaccine confers equal efficacy in mice with milder inflammatory responses compared to a whole-cell vaccine. Sci Rep 2016;6:38240.

324. MicoliF, MacLennanCA. Outer membrane vesicle vaccines. Semin Immunol 2020;50:101433.

325. ChenCY, RaoSS, YueT, et al. Glucocorticoid-induced loss of beneficial gut bacterial extracellular vesicles is associated with the pathogenesis of osteonecrosis. Sci Adv 2022;8:eabg8335.

326. LiuJH, ChenCY, LiuZZ, et al. Extracellular vesicles from child gut microbiota enter into bone to preserve bone mass and strength. Adv Sc 2021;8:2004831.

327. Díez-SainzE, MilagroFI, Riezu-BojJI, Lorente-CebriánS. Effects of gut microbiota-derived extracellular vesicles on obesity and diabetes and their potential modulation through diet. J Physiol Biochem 2022;78:485-99.

328. ChelakkotC, ChoiY, KimDK, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med 2018;50:e450.

329. WangT, MoL, OuJ, et al. Proteus mirabilis vesicles induce mitochondrial apoptosis by regulating mir96-5p/abca1 to inhibit osteoclastogenesis and bone loss. Front Immunol 2022;13:833040.

Cargo exchange between human and bacterial extracellular vesicles in gestational tissues: a new paradigm in communication and immune development (2024)
Top Articles
Latest Posts
Article information

Author: Mr. See Jast

Last Updated:

Views: 5986

Rating: 4.4 / 5 (75 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Mr. See Jast

Birthday: 1999-07-30

Address: 8409 Megan Mountain, New Mathew, MT 44997-8193

Phone: +5023589614038

Job: Chief Executive

Hobby: Leather crafting, Flag Football, Candle making, Flying, Poi, Gunsmithing, Swimming

Introduction: My name is Mr. See Jast, I am a open, jolly, gorgeous, courageous, inexpensive, friendly, homely person who loves writing and wants to share my knowledge and understanding with you.